室内避障无人机应用

2018-09-12

  室内无人机避障首先解决的是室内定位技术,下面将对主流的室内定位技术进行简要介绍。

  视觉定位

  视觉定位系统可以分为两类,一类是通过移动的传感器(如摄像头)采集图像确定该传感器的位置,另一类是固定位置的传感器确定图像中待测目标的位置。根据参考点选择不同又可以分为参考三维建筑模型、图像、预部署目标、投影目标、他传感器和无参考[18]。参考3D建筑模型和图像分别是以已有建筑结构数据库和预先标定图像进行比对。而为提高鲁棒性,参考预部署目标使用布置好的特定图像标志(如二维码)作为参考点;投影目标则是在参考预部署目标的基础上在室内环境投影参考点。参考其他传感器则可以融合其他传感器数据以提高精度、覆盖范围或鲁棒性。

  Hile和Borriello使用照相手机比对图像和楼层平面图,达到了30cm的定位精度[19]。Sjö使用一个低分辨率相机基于参考图像实现SLAM(Simultaneous Localization And Mapping)算法,达到了亚米级的定位精度[20]。Mulloni使用条形码作为参考点标记,实现了厘米到分米级的定位精度[21]。Tilch和Mautz使用一个移动相机和激光仪作投影,定位精度可达到亚毫米级[22]。LiuT.使用一个6自由度惯性测量单元(Inertial Measurement Unit, IMU)和两个激光扫描器获取位置,平均定位精度达到行走距离的1%[23]。

  红外线定位

  红外线是一种波长在无线电波和可见光波之间的电磁波。基于红外线的定位系统可以主要分为两类:有源信标、红外成像[4]。

  有源信标是在室内放置若干红外接收机,同时待测物携带一个装有红外发射机的电子标签。该标签周期发送该待测物的ID,接收机接收到信号后将数据发送到数据库进行定位。该方法具有代表性的是AT&T实验室和剑桥在1992年联合发布的Active Badge系统。该系统可以达到6米的平均定位精度[24]。

  红外成像则是通过传感器采集环境中自然红外辐射生成图像实现检测行人或其他待测目标。2011年德国Ambiplex提供基于自然环境热辐射的“IR.Loc”定位系统,基于AOA确定热源的位置,可实现10m范围内20cm至30cm的定位精度[25]。

  Polar Systems(极点定位)

  该系统通过仪器测量到达角或者到达时间进行定位,仪器通常有激光跟踪仪、全站仪和经纬仪。全站仪的可覆盖范围通常为2km到10km,但其设备高成本、大体积以及对可视距的要求使其不适用于在室内定位中推广。NikonMetrology 2011年发布的iGPS(indoor Global Positioning System)实现了基于激光的室内工业级高精度三维定位。其原理与GPS不同,包括不少于两个固定位置的发射器发射扇形激光束和参考红外脉冲,基于TDOA原理实现对接收机的定位。NikonMetrology宣称该系统可实现在布设4至8个发射器的1200平方米的典型测试环境中实现0.2mm的三维定位精度[26]。但其造价十分昂贵,可用于工业级定位需求,不适合于大众市场研究和推广。

  超声波定位

  超声波定位主要采用反射式测距法,通过多边定位等方法确定物体位置,系统由一个主测距器和若干接收器组成,主测距仪可放置在待测目标上,接收器固定于室内环境中。定位时,向接收器发射同频率的信号,接收器接收后又反射传输给主测距器,根据回波和发射波的时间差计算出距离,从而确定位置[27]。

  Ward于1997年建立的ActiveBat是超声定位的先驱,通过大量部署接收设备(720个标签),达到3cm的定位精度[28]。超声波定位整体定位精度较高,结构简单,但超声波受多径效应和非视距传播影响很大,且超声波频率受多普勒效应和温度影响,同时也需要大量基础硬件设施,成本较高。

  WLAN定位

  基于IEEE802.11b标准的无线局域网已在人们的生活场所大量部署,使用WLAN信号定位的优势在于不需要部署额外设备,定位成本低,信号覆盖范围大,适用性强,利于普及推广[9]。

  基于RSSI的指纹定位法是目前主流的WLAN定位方法[29],定位精度取决于校准点的密度,从2m到10m不等。同时基于TOA测距的定位方法由于多径效应和时钟分辨率低定位效果较差[30],而基于RSSI测距的定位方法由于信号衰减与距离的关系在不同环境和设备条件下都有改变,定位结果也不理想。

  RFID定位

  射频识别(RFID)是一种操控简易,适用于自动控制领域的技术,它利用电感和电磁耦合的传输特性,实现对被识别物体的自动识别。RFID定位系统通常由电子标签、射频读写器以及计算机数据库构组成。最常应用的定位方法是邻近检测法。利用RSSI实现多边定位算法也可一定程度上实现范围估计。根据电子标签是否有源可以分为有源RFID和无源RFID。

  1)有源RFID

  有源RFID的电子标签包含电池,因此信号传输范围相比于无源RFID更大,达到30米以上。同时可以实现基于RSSI测量的指纹定位[31]。Seco使用高斯过程描述RSSI在室内的传播结合指纹定位的方法,在1600平方米的实验环境中采用71个RFID标签实现50%定位误差1.5m[32]。

  2)无源RFID

  无源RFID系统只依赖电感耦合,因此没有电池。相比有源RFID,体积更小,耐用性更高,成本更低。无源RFID定位系统多使用邻近探测法实现定位。

  超宽带定位

  超宽带定位系统通常包括UWB接收器、参考标签和其他标签。超宽带技术通过发送纳秒级及其以下的超窄脉冲来传输数据,可以获得GHz级的数据带宽,发射功率较低,无载波[33]。因为其高带宽,理论上基于TOA或TDOA方法实现厘米级的定位。Ubisense是发布于2011年采用TDOA和AOA的室内定位系统,定位精度可达15cm,测距范围达到50m[34]。但UWB系统较高的系统建设成本阻碍了其普及推广。

  惯性导航

  惯性导航系统(Inertial Navigation System, INS)广泛应用于制导武器、舰艇、火箭、飞机和车辆等的导航与跟踪,其核心组件IMU,由三个正交的单轴加速度计和三个正交的陀螺仪组成。随着微机电技术的发展,传感器尺寸变小,成本降低,同时加入磁力计,被广泛应用于行人导航[35]。

  惯性导航基于航位推算方法实现,因此随着时间会产生累积误差,其定位精度取决于传感器质量和传感器安放位置[36]。绑在脚上的惯性导航可采用零速校正限制漂移实现定位误差小于行走距离的1%,而安放在其他位置则定位误差常常大于1%。随着智能手机的普及和微机电器件的发展,基于智能手机的惯性导航成为研究热点[37][38][39][40]。

  地磁定位

  现代建筑物基本都具有钢筋混凝土结构,这些建筑物墙体内部的金属结构会对室内的地磁场产生很大影响,而室内的电气设备也会对磁场产生影响。同时室内磁场具有较强的稳定性[41]。故室内地磁场是一种可运用于室内定位导航的有效信息源。地磁定位,是指利用地磁场特征的特异性获取位置信息的技术方案[42]。定位方法主要采用指纹定位的方法。由于原有磁场信息,故成本相比其他定位技术更低,但仍需要人工建立数据库。IndoorAtlas的地磁定位方案是其中代表,定位精度已能达到1~2米[43]。

  伪卫星

  卫星是一种基于地面的能传播类似GNSS信号的发生器,最简单的组成是GNSS信号发生器和发射装置[44]。采用与GNSS信号体制不同的伪卫星,可避免对正常卫星信号的干扰,可达到厘米级定位精度,但设备复杂,成本很高。Locata在2010年发布的系统可实现50平方千米内2厘米的定位精度[45]。

  蓝牙和ZigBee定位

  蓝牙和ZigBee技术类似,有部分重合频段,且两者定位技术均基于短距离低功耗通信协议:ZigBee是基于IEEE802.15.4标准的低功耗局域网协议;目前蓝牙定位主要使用蓝牙4.0规范,是基于低功耗蓝牙技术(Bluetooth Low Energy, BLE)。两者都具有近距离、低功耗、低成本的特点[46][47]。ZigBee(蓝牙)的定位均通过在室内环境中布置静态参考点(蓝牙beacon),可以实现基于邻近探测法、质心法[48]、多边定位和指纹定位的定位系统[49][50]。定位精度主要取决于基础设施的部署密度。2016年发布的蓝牙5.0协议支持BLE Direction Finding的 Angle of Arrival(AoA)和Angle of Departure(AoD)参数估计,这些参数将为1m以内的室内定位提供技术支撑

  蜂窝网络定位

  蜂窝网络技术是一种成熟的通信技术,主要用于对移动手机的定位。蜂窝网络通过检测移动台和多个基站之间传播信号的特征参数(RSSI,传播时间或时间差,入射角等)[51],可采用邻近探测法、AOA、TOA和OTDOA (Observed Time Difference Of Arrival, 观测到达时间差)[52]实现定位,可作为普适化的定位方案。目前Cell-ID加上RTT解决方案精度为20-60m。采用智能天线MIMO+TDOA/AOA技术,精度可以达到5-10m。未来的5G网络具有大带宽、多天线、密集组网等优势,可以实现1m以内的定位精度。

  融合定位

  融合定位是指融合多种定位技术、多传感器的信息进行综合定位,以达到优势互补,提高定位精度、鲁棒性,降低定位成本。定位技术的选择则主要视场景需求而定,多为绝对定位技术与相对定位技术的结合,如浙江大学郭伟龙实现了地磁与惯导结合的室内定位系统[41],平稳步行时90%定位误差小于4.5m;上海交通大学钱久超将惯导定位与地图结合实现手机端的室内定位,正常持握手机姿态下95%误差为0.8m[36];同时也有很多研究将WiFi与惯导结合[53][54]取得了较好的效果。针对行人复杂的运动行为,[55][56]提出了运动识别辅助的行人定位方法,提高了室内定位的鲁棒性。

  协同定位

  协同定位是指在一个定位场景中存在已知节点和未知节点,未知节点之间可以进行信息交互,也可以相互之间进行测距、测向或邻近探测,并且可以利用过去时刻的定位信息,从而实现对未知节点当前时刻的定位。协同定位的具体方式可根据具体定位技术调整,目标在于通过节点之间的协同合作提升单个节点及整个系统的定位性能[57]。协同定位在多机器人定位、无线网络定位、水下自主航行器及卫星定位等研究中正受到越来越多的关注。文献[58]对无线传感网络关于协同定位的研究进行了综述。意大利都灵理工大学的R. Garello团队进行了协同定位对卫星定位终端辅助捕获的研究,并比较了几种常见的定位算法的性能[59]。文献[60]对水下自主航行器的协同定位进行了综述。